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In this paper, a new multiple reciprocity formulation is developed to solve the transient heat

conduction problem. The time dependence of the problem is removed temporarily from the equations

by the Laplace transform. The new formulation is derived from the modified Helmholtz equation in

Laplace space (LS), in which the higher order fundamental solutions of this equation are firstly derived

and used in multiple reciprocity method (MRM). Using the new formulation, the domain integrals can

be converted into boundary integrals and several non-integral terms. Thus the main advantage of the

boundary integral equations (BIE) method, avoiding the domain discretization, is fully preserved. The

convergence speed of these higher order fundamental solutions is high, thus the infinite series of

boundary integrals can be truncated by a small number of terms. To get accurate results in the real

space with better efficiency, the Gaver-Wynn-Rho method is employed. And to integrate the

geometrical modeling and the thermal analysis into a uniform platform, our method is implemented

based on the framework of the boundary face method (BFM). Numerical examples show that our

method is very efficient for transient heat conduction computation. The obtained results are accurate at

both internal and boundary points. Our method outperforms most existing methods, especially

concerning the results at early time steps.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Transient heat conduction problems can be efficiently solved
by the boundary integral equation method [1]. The various
solution procedures reported in the literature can essentially be
classified into two broad categories: the time domain approach
and the transform space approach [1–3]. The first boundary
integral solution for the diffusion equation was proposed by Rizzo
and Shippy [2]. In their approach, the time dependence of the
problem is temporarily removed with the Laplace transform.
Using the transform, the parabolic heat conduction equation is
transformed into a more tractable elliptic equation. Then the
boundary integral equation is derived and solved in the Laplace
space for a sequence of real positive values of the transform
parameter. Finally, the inverse transformation is performed to
evaluate the physical variables in the real space. Chang et al. [3]
employed time-dependent fundamental solutions in the context
of the direct method to solve two-dimensional problems of heat
conduction in isotropic and anisotropic media in 1973. The both
categories of approaches suffer from the time-consuming domain
integral calculation.
ll rights reserved.

).
The unsteady heat conduction problem without heat source
and non-uniform initial temperature distribution can be easily
solved by the conventional boundary element method (BEM)
without using internal cells. For special cases, unsteady heat
conduction problems with constant heat generation and uniform
initial temperature distribution can also be solved by the con-
ventional BEM [4]. However, the domain integral is necessary in
the cases where the initial temperature distribution is not uni-
form and the heat generation function is arbitrary. In these cases,
the basic advantage of dimensionality reduction is lost in the
BEM. To avoid the domain integration, several methods have been
proposed. Tanaka et al. [5] introduced the dual reciprocity
method (DRM) to solve the diffusion problem. In that method, a
number of internal points for approximation of the non-
homogeneous term are necessary. Nowak and Neves [6,7] applied
the multiple reciprocity method (MRM) to convert the domain
integral to an infinite series of boundary integrals using the
higher-order fundamental solutions. In Reference [6], the authors
tried to solve the transient problems with the fundamental
solution and higher order fundamental solutions of the Laplace
equation. In the MRM, however, numerical instability was found
when the length of time step is small. Moreover, the higher order
derivatives of the time-dependent fundamental solutions are
complicated and the verification of the convergence has not been
found in existing literatures. Nevertheless, applications of the
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MRM have been found. Chen and Wong [8] extended the dual
formulation for the MRM to solve the acoustic modes success-
fully. A series-type complex-valued dual BEM call the complete
MRM was derived in [9]. Based on the MRM, Ochiai and Kitayama
[4] proposed a triple reciprocity method. In some cases, however,
this method still applies internal points for variable interpolation.

In this paper, the Laplace transformation technology was
applied to eliminate the time-dependence. In LS, we can get the
weighted residual statement of the control equation with the
fundamental solution. Furthermore, the fundamental solution is
derived from the modified Helmholtz equation rather than the
Laplace equation. The MRM is applied to avoid the domain
integration related to the initial distribution and heat generations.
By using MRM, the domain integral is converted to an infinite
series of boundary integrals. These infinite series are truncated
for practical implementations. The higher order forms of the
fundamental solution used in MRM are first derived using a
reciprocity scheme. These forms of the fundamental solution are
simpler than conventional formulations used in Ref. [6]. In
addition, these higher order forms are only constant times of
the original fundamental solution. Thus the formulation of MRM
is of simple form.

To avoid the differences between the geometric model and the
analysis model, Zhang proposed the boundary face method (BFM)
in [10,11]. In the BFM, the boundary integration is performed on
boundary faces, which are represented in parametric form and
directly derived from the boundary representation data structure
in solid modeling. The integrand quantities, such as the coordi-
nates of Gauss integration points, Jacobian and out normal are
calculated directly from the faces rather than from elements. By
coupling with the DRM, Zhou [12,13] extended the BFM for non-
homogeneous problem. Our method is implemented in the frame-
work of boundary face method (BFM) program.

After solving the BIE in LS, the inversion of Laplace transform is
another important issue. The analytical inversion of Laplace
transform is known to be ill-posed. In other words, small changes
of value in Laplace space may lead to large disturbance in the real
space. So the method for numerical inversion is of great impor-
tance to the accuracy of the result. There are several numerical
algorithms in literature that can be used to perform the inverse
Laplace transform. The most commonly known numerical inver-
sion procedures are Fourier series method [14,15], Talbot’s
method [16,17], Weeks’ method [18,19] and post-Gaver’s method
[17,20–22]. To balance the accuracy and efficiency of the compu-
tation, the Gaver-Wynn-rho algorithm, which use the Wynn’s rho
algorithm to improve the convergence rate of Gaver’s algorithm,
is applied in this paper.
2. Problem definition

2.1. Governing equation, boundary conditions and initial conditions

If the material is isotropic and there is no internal generation
inside the domain, the transient potential problem can be
represented as

r2uðx, tÞ ¼
1

a

@uðx, tÞ

@t
xAO ð1Þ

where u(x, t) is the temperature of the location x at the time t. The
coefficient a is the thermal diffusivity. O stands for the considered
domain enclosed by G1 [ G2, the boundary conditions are given as
the following types

uðx,tÞ ¼ uðx,tÞ, xAG1

qðx, tÞ ¼ @uðx,tÞ
@nðxÞ ¼ qðx,tÞ, xAG2

ð2Þ
in which u,q stand for the prescribed temperature and normal
flux on the boundary. Initial conditions at time t¼t0 can be
prescribed

u0ðxÞ ¼ uðx,t0Þ: xAO ð3Þ

We denote the Laplace transform of a function u(x, t) by

~uðx, sÞ ¼ Lðuðx, tÞÞ ¼

Z 1
0

uðx, tÞe�stdt ð4Þ

And we assume the transform parameter s is real and positive.
After integration by parts, we can obtain

L
@uðx, tÞ

@t

� �
¼ s ~uðx, sÞ�u0ðxÞ ð5Þ

Implementing the Laplace transform on Eq. (1), we have the
following governing equation.

r
2 ~uðx, sÞ�

s

a
~uðx, sÞþ

1

a
u0ðxÞ ¼ 0 ð6Þ

It is worth noting that this is actually a modified Helmholtz
equation. With the same transform, the boundary condition for
Eq. (6) is

~uðx, sÞ ¼ uðx, sÞ: xAG1

~qðx, sÞ ¼ qðx, sÞ: xAG2
ð7Þ
2.2. A new form fundamental solution and its MRM formulation

We denote un for the fundamental solution of Eq. (6), and it
satisfies the following equation

r2unðx, sÞ�lunðx, sÞ ¼Dðx, xÞ ð8Þ

In Ref. [1], the fundamental solution for the above equation is

un ¼
�l1=4

r1=2ð2pÞ3=2
K1=2 l1=2r

h i
ð9Þ

where l¼s/a and Kv is the modified Bessel function of the second
kind of order v [1]. Substituting the following equation to Eq. (9)

K1=2 x½ � ¼

ffiffiffiffiffiffi
p
2x

r
e�x ð10Þ

we have a simple form of the above fundamental solution.

un ¼
�1

4pr
e�

ffiffi
l
p

r ð11Þ

The derivative of the fundamental solution is rewritten as

qn ¼
@un

@n
¼

1

4pr2
ð1þ

ffiffiffi
l
p

rÞe�
ffiffi
l
p

r �
@r

@n
ð12Þ

By employing the fundamental solution in Eq. (11) and Eq. (12),
Eq. (6) can be converted into the following BIE:Z
G

qn � ~udG�c � ~uðYÞ�

Z
G

un � ~qdG¼
1

a

Z
O

un � u0dO ð13Þ

In Eq. (13), the value of the constant c is

c¼

0 YAO
1 YAO

0:5 YAG1 [ G2

8><
>: ð14Þ

The higher order fundamentals are necessary when using the
MRM in conversion of the domain integral. A sequence of higher
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order fundamental solutions can be defined by the recurrence
formula:

unð0Þ ¼ un

r2unðjþ1Þ ¼ unðjÞ j¼ 0,1,2,. . .

qnðjþ1Þ ¼ @unðjþ 1Þ

@n

ð15Þ

or by the formula:

unðjÞ ¼ ð1=lj
Þunð0Þ j¼ 0,1,2,. . .

qnðjÞ ¼ ð1=lj
Þqnð0Þ

ð16Þ

From Eq. (16), it is found that the higher order solutions are
obtained from their corresponding original fundamental solution
by multiplying a constant term. It is much more convenient than
the conventional higher order solutions. Furthermore, the influ-
ence matrices which arise from the higher order forms are just
the times of that arise from the fundamental solutions, the
storage of the all matrices can be vastly reduced by only keeping
the matrices from the fundamental solution.

In the conventional MRM, the un(j) in domain integrals are
replaced by r2un(jþ1) in the following BIE:Z
O

unðjÞ � uðjÞ0 ðxÞdO

¼

Z
O
r

2unðjþ1Þ � uðjÞ0 ðxÞdO

¼

Z
O

unðjþ1Þ � r
2uðjÞ0 ðxÞdOþ

Z
G

qnðjþ1Þ � uðjÞ0 dG

�

Z
G

unðjþ1Þ � uðjÞ0 dG

¼

Z
O

unðjþ1Þ � uðjþ1Þ
0 ðxÞdOþ

Z
G

qnðjþ1Þ � uðjÞ0 dG

�

Z
G

unðjþ1Þ � uðjÞ0 dG ð17Þ

Considering Eq. (15), we reform Eq. (8) into the following
equation:

un ¼ ð1=lÞr2un�ð1=lÞDðx, YÞ ¼r2unð1Þ�ð1=lÞDðY , xÞ ð18Þ

where we still adopt the mark of un(j)and qn(j) as in Eq. (16). Thus
in our method, the relationship between the fundamental solu-
tion and its higher order forms is a little different from Eq. (15).
For domain integration, the second item on the right of Eq. (18) is
evaluated using the function of Y. Substituting Eq. (18) into the
domain integral term in Eq. (13), it yields:Z
O

un � u0dO¼
Z
O
r2unð1Þ�

1

l
DðY , xÞ

� �
� u0dO

¼

Z
O
r

2unð1Þ � u0dO�c
1

l
u0ðYÞ ð19Þ

Then we apply the higher order fundamental solutions to
substitute the lower order one in the reciprocity theorem, and
the following representation should be employed:

unðjÞ ¼ ð1=lj
Þunð0Þ ¼r2unðjþ1Þ�ð1=ljþ1

ÞDðY , xÞ ð20Þ

In our implementation additional quantities are required.
These quantities include the initial temperature, initial normal
flux and their higher order forms, which are listed below.

uð0Þ0 ¼ u0 uðjÞ0 ¼r
2uðj�1Þ

0

q0 ¼
@u0
@n qðjÞ0 ¼

@uðjÞ
0

@n

ð21Þ

Using reciprocity scheme, the domain integral can be repre-
sented recursively byR
OunðjÞ � uðjÞ0 ðxÞdO¼

R
O r

2unðjþ1Þ� 1
ljþ 1 DðY , xÞ

� �
� uðjÞ0 ðxÞdO
¼

Z
O
r

2unðjþ1Þ � uðjÞ0 ðxÞdO�
c

ljþ1
uðjÞ0 ðYÞ

¼

Z
O

unðjþ1Þ � r
2uðjÞ0 ðxÞdOþ

Z
G

qnðjþ1Þ � uðjÞ0 dG

�

Z
G

unðjþ1Þ � uðjÞ0 dG�
c

ljþ1
uðjÞ0 ðYÞ

¼

Z
O

unðjþ1Þ � uðjþ1Þ
0 ðxÞdOþ

Z
G

qnðjþ1Þ � uðjÞ0 dG

�

Z
G

unðjþ1Þ � uðjÞ0 dG�
c

ljþ1
uðjÞ0 ðYÞ ð22Þ

And totally by:Z
O

un � u0dO¼
X1
j ¼ 0

Z
G

qnðjþ1Þ � u0
ðjÞdG�

Z
G

unðjþ1Þ � q0
ðjÞdG

� �

�c
X1
j ¼ 0

1

ljþ1
uðjÞ0 ðYÞ

¼

Z
G

qn �
X1
j ¼ 0

1

ljþ1
u0
ðjÞdG�

Z
G

un �
X1
j ¼ 0

1

ljþ1
q0
ðjÞdG

�c
X1
j ¼ 0

1

ljþ1
uðjÞ0 ðYÞ ð23Þ

If the initial temperature distribution can be expressed by a
polynomial function, uðjÞ0 and qðjÞ0 approach to zero with an increas-
ing j. Thus the infinite series of boundary integrals will become
finite exactly. If the initial temperature distribution is more
general, bearing in mind the convergence of the higher order
fundamental solution, the infinite series can also be computed
through several truncated terms. The convergence will be dis-
cussed in Section 2.5. Truncating the series in Eq. (23) by M terms,
and then substituting it into Eq. (13), we haveZ
G

qn ~udG�c � ~uðYÞ�

Z
G

un ~qdG

¼
1

a

Z
G

qn �
XM�1

j ¼ 0

1

ljþ1
u0
ðjÞdG

�
1

a

Z
G

un �
XM�1

j ¼ 0

1

ljþ1
q0
ðjÞdG�

c

a

XM�1

j ¼ 0

1

ljþ1
uðjÞ0 ðYÞ ð24Þ

In matrix notation, approximations of potential and flux for
each boundary element can be expressed by the following general
system

~uðxÞ ¼FT ~un

~qðxÞ ¼FT ~qn

ð25Þ

with ~unand ~qn being the vectors referring to the nth boundary
element and containing nodal values of potential and flux, respec-
tively. The row matrix FT contains the local shape functions. The
number of column of this matrix depends on the type of boundary
elements. Discretization of the boundary G into boundary elements
allows one to replace the integrals in Eq. (24) by the summation of
integrals, each one along particular boundary element Gn

XN

n ¼ 1

Z
Gn

qn ~udGn�ci ~uðYÞ�
XN

n ¼ 1

Z
Gn

un ~qdGn

¼
1

a

XN

n ¼ 1

Z
Gn

qn �
XM�1

j ¼ 0

1

ljþ1
u0
ðjÞdGn�

Z
Gn

un �
XM�1

j ¼ 0

1

ljþ1
q0
ðjÞdGn

0
@

1
A

�
c

a

XM�1

j ¼ 0

1

ljþ1
uðjÞ0 ðYÞ ð26Þ

Finally, we collocate the field points at all interpolation points
and the following system of linear equations is obtained

HU�GQ ¼ R ð27Þ
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where the entries of the matrices are

H¼H0
�0:5I G¼ G0

R¼
1

a

XM�1

j ¼ 0

ðHjþ1Uj
0�Gjþ1Qj

0Þ ¼
1

a
� H

XM�1

j ¼ 0

1

ljþ1
U0
ðjÞ

�
1

a
� G

XM�1

j ¼ 0

1

ljþ1
Q0
ðjÞ

H0
ij ¼

R
Gj
FT qndGj Hk

ij ¼
R
Gj
FT qnðkÞdGj ¼

1
lk H0

ij

G0
ij ¼

R
Gj
FT undGj Gk

ij ¼
R
Gj
FT unðkÞdGj ¼

1
lk G0

ij ð28Þ

where vectors UðjÞ0 , Q ðjÞ0 are built up from nodal values of functions
uðjÞ0 , qðjÞ0 , respectively.

2.3. The MRM formulation with the heat generation

The transient heat conduction problem with heat generation
can be represented as

@u

@t
¼ ar2uþ

1

cr f ðx, tÞ xAO ð29Þ

where f(x, t) are the heat source density, the coefficients c and r
are the specific heat and the density, respectively. After Laplace
transform, the govern equation is

r
2 ~u�l ~u ¼�

1

a
u0�

1

k
~f ðx, sÞ ð30Þ

where the coefficient k is the heat conductivity. We denote for
short

bðx, sÞ ¼
1

a
u0þ

1

k
~f ðx, sÞ ð31Þ

The BIE is:Z
G

qn ~udG�c � ~uðYÞ�

Z
G

un ~qdG¼
Z
O

un � bðx, sÞdO ð32Þ

Similar to Eq. (23), the domain integral term in the right hand
side of Eq. (32) can be represented byZ
O

un � bðx,sÞdO¼
Z
G

qn �
X1
j ¼ 0

1

ljþ1
bðjÞdG

�

Z
G

un �
X1
j ¼ 0

1

ljþ1
bn
ðjÞdG�

1

2

X1
j ¼ 0

1

ljþ1
bðjÞðYÞ ð33Þ

The higher order source functions are expressed as

~f
ð0Þ
ðx,sÞ ¼ ~f ðx,sÞ

~f
ðjÞ
ðx,sÞ ¼r2 ~f

ðj�1Þ
ðx,sÞ

bð0Þðx,sÞ ¼ 1
a u0þ

1
k
~f
ð0Þ
ðx,sÞ

bðjÞ ¼ 1
a uðjÞ0 ðx,sÞþ 1

k
~f
ðjÞ
ðx,sÞ

bðjÞn ¼
@bðjÞ

@n ¼
1
a

@uðjÞ
0
ðxÞ

@n þ
1
k
@~f
ðjÞ
ðx,sÞ
@n

ð34Þ

We can truncate the series appropriately in Eq. (33) by M

terms

Z
G

qn ~udG�
1

2
~uðYÞ�

Z
G

un ~qdG

¼
XM�1

j ¼ 0

Z
G
~qnðjþ1Þ

� bðjÞdG�
Z
G
~unðjþ1Þ

� bðjÞn dG
� �

�
XM�1

j ¼ 0

1

ljþ1
bðjÞðYÞ

ð35Þ

Eq. (35) can be expressed by matrix form as

H¼H0
�0:5I G¼ G0
F ¼
XM�1

j ¼ 0

ðHjþ1Bj
�Gjþ1Bj

nÞ ¼H
XM�1

j ¼ 0

1

ljþ1
Bj
�G
XM�1

j ¼ 0

1

ljþ1
Bj

n ð36Þ

where the matrix I is the identity matrix.

2.4. The derivation of the fundamental solution

For the field point YAO, the integral equation is:

~uðYÞ ¼

Z
G

qn ~udG�
Z
G

un ~qdG�
Z
O

un � bðx, sÞdO ð37Þ

After substitution of Eq. (33) into Eq. (37), the equation
becomes

~uðYÞ ¼

Z
G

qn ~u�
XM�1

j ¼ 0

1

ljþ1
bðjÞ

0
@

1
AdG�

Z
G

un ~q�
XM�1

j ¼ 0

1

ljþ1
bðjÞn

0
@

1
AdG

þ
XM�1

j ¼ 0

1

ljþ1
bðjÞðYÞ ð38Þ

To compute the flux inside the domain, furthermore, the
following hyper-singular BIE is applied.

@ ~uðYÞ

@xi
¼

Z
G

@qn

@xi

~u�
XN�1

j ¼ 0

1

ljþ1
bðjÞ

0
@

1
AdG

�

Z
G

@un

@xi

~q�
XN�1

j ¼ 0

1

ljþ1
bðjÞn

0
@

1
AdGþ

XN�1

j ¼ 0

1

ljþ1

@bðjÞðYÞ

@xi

~qðYÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3

i ¼ 1

@ ~uðYÞ

@xi

� �2
vuut ð39Þ

So the derivative of the fundamental solution is expressed as
follows

@un

@xi
¼
ð1þlrÞ

4pr2
e�lr xi�Yi

r

@qn

@xi
¼

e�lr

4pr3
�3ð1þlrÞ�l2r2
h i

dxi
@r

@n
þð1þlrÞni

� �
i¼ 1,2,3 ð40Þ

where (Y1,Y2,Y3) is the source point Y and (n1,n2,n3)is the outward
normal to the boundary at the point x.

2.5. The convergence of the MRM formulations

In general, the value of the series in formula (33) is affected by
the numerical discretization of the boundary as well as by the
number of the truncated terms in the series. It is obvious that
the numerical mesh has to be appropriate to represent accurately
the changes of the problem variables. However, since this is a
common problem in many numerical methods, this topic will not
be discussed here. We study the criteria when the series (33)
converges and the way of controlling the required number
of terms.

In the first case, the domain distributions including initial
temperature distribution and source distribution is of constant type
or polynomial type, the MRM converges naturally. It is worth noting
that, in many practical cases, the considered domain distribution can
be approximated by these simple distributions. In cases of these
simple distributions, the domain integrals can be analytically con-
verted to boundary integrals through several reciprocal procedures.
Thus there is no convergent problem in this case.

In the second case, the MRM series for representing the domain
distribution do not converge quickly or the value of the higher
order functions even increase at a certain speed. In this case, the
higher order fundamental solutions are of more importance to the
convergence of the expansion than the higher order functions.



Table 1
Thermal diffusivity of several materials.

Materials and substances Pyrolytic graphite, parallel to layers Silver, pure (99.9%) Steel, 1% carbon Water vapour

(1 atm, 400 k)

Steel,

stainless 304A

Thermal diffusivity (m2/s) 1.22�10�3 1.6563�10�4 1.172�10�5 2.338�10�5 4.2�10�6
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The convergence criterion can be derived from the condition that
the ratio of two subsequent terms is less than 1. This can be
written in terms of inequalities as follows

unðjþ2Þbðjþ1Þ
n

unðjþ1ÞbðjÞn

					
					o1 and

qnðjþ2Þbðjþ1Þ

qnðjþ1ÞbðjÞ

					
					o1 ð41Þ

In our method, the higher order fundamental solution is of the
following relation:

unðjþ2Þ

unðjþ1Þ
¼

qnðjþ2Þ

qnðjþ1Þ
¼

1

l
ð42Þ

where l is a coefficient related with the thermal diffusivity a and
the time variable t.

l¼
sn

a
¼

n� log 2

a� t
n¼ 1,2,. . .,2N ð43Þ

We substitute Eq. (42) and Eq. (43) into Eq. (41), the criterion
becomes

bðjþ 1Þ
n

bðjÞn

				
				o unðjþ 1Þ

unðjþ 2Þ

			 			¼min n�log2
a�t

			 			� �
¼

log2
a�t

			 			¼ lmin

bðjþ 1Þ

bðjÞ

			 			o qnðjþ 1Þ

qnðjþ 2Þ

			 			¼ lmin

ð44Þ

In practical materials, the value of the thermal diffusivity is
usually very small. The value of lmin will be large enough to
satisfy Eq. (44). The thermal diffusivities of several materials are
listed in Table 1. This can be also found in the website of
Wikipedia [23].

Our method converges when domain distribution satisfies the
following relations.

bðjþ1Þ
n

bðjÞn

					
					olmin ð45Þ

and

bðjþ1Þ

bðjÞ

					
					olmin ð46Þ

It can be seen from the convergent criterion Eq. (45) and Eq.
(46) that the convergence of MRM also depends on the time
variable t. For short time simulation, the value of lmin is very big
and the convergent criterion is satisfied easily. But for long time
simulation, the convergent criterion is usually unsatisfied. Thus,
this method is not suggested to be directly applied to simulate the
transient heat conduction for a long time simulation, which is a
limitation of the proposed method. In the long time simulation,
however, other additional approach as approximating source
distribution can be applied in the MRM to circumvent the
convergent problem [4].

2.6. Laplace inversion

In the Laplace transform boundary integral equation method
approach, the numerical inversion of the Laplace transform is very
important. There are many powerful algorithms to compute the
numerical inversion.
In 1941 Post–Widder provided the analytic solution of the
Laplace inverse. Gaver [20] presented the discrete analog of Post–
Widder formula in 1966. After expanding the difference operator,
the formula can be written as

f kðtÞ ¼
ak

t

2k

k

� �Xk

j ¼ 0

ð�1Þj
k

j

 !
f̂
ðkþ jÞa

t

� �
ð47Þ

where a¼ log 2. The computation of it only processes in real
number space and its implement is the easiest one. In this paper,
the Gaver functionals is applied. The Gaver functionals can also be
computed by the following recursive formulas:

GðnÞ0 ¼
na
t f̂ ðna=tÞ, 1rnr2N

GðnÞk ¼ ð1þ
n
kÞG
ðnÞ
k�1�ð

n
kÞG
ðnþ1Þ
k�1 , kZ1,nZk

f kðtÞ ¼ GðkÞk

ð48Þ

Our implementation mainly consists of three steps. First of all,
we should determine the value of t and N. Then 2N systems in
Laplace space should be solved. After that, we compute
f 1ðtÞ, f 2ðtÞ,. . ., f 2NðtÞ using the formulation (48).

In practical applications, the Gaver functionals usually provides a
very poor approximation because 9f(t)� fk(t)9–c/k as k-N. For
example, f1000(t) may yield an estimate to f(t) with only two or three
digits of accuracy. To achieve a good approximation, a convergence
acceleration algorithm is required for the sequence fk(t). Valko and
Abate [17,21] studied some nonlinear sequence transformations
applied to the Gaver functionals and find that the Wynn’s rho
algorithm is the most effective one which is given by the recursive
algorithm

rðnÞ
�1 ¼ 0, rðnÞ0 ¼ f nðtÞ, nZ0

rðnÞk ¼ r
ðnþ1Þ
k�2 þ

k
rðnþ 1Þ

k�1
�rðnÞ

k�1

: kZ1
ð49Þ

Then the approximation to f(t) is obtained as

f kðt, NÞ ¼ rð0ÞN ð50Þ

The integer N must be even. As N increases the accuracy of the
approximant f(t,N) also increases. Using Wynn’s rho algorithm the
relative error estimate

f ðtÞ�f ðt, NÞ

f ðtÞ

				
				� 10�0:8N

ð51Þ

That is, number of significant digits in the approximant f(t, N)
is about N.
3. Numerical examples

To verify the efficiency of our method, solutions for three
transient heat conduction problems with different type of condi-
tion and with different geometries are presented in this section.

Example 1. A suddenly heated cube

In the first example, we consider a unit cube with no initial

temperature. As presented in Ref. [24], the cube is suddenly

heated on the top face such that a temperature of 100 1C is



u=1000C

q=0

Fig. 1. A unit cube with zero initial temperature and the top surface maintained at

a constant temperature of 100 1C for t40.

Table 2
Time-temperature history at the base of a cube heated suddenly at the tope.

Time elapsed(s) Analytic (1C) Numerical solutions

of LT-BFM

Numerical solution

in [24], Dt¼0.2

N¼4 N¼6

0.8 5.07 5.13817 5.07063 4.34

1.6 22.77 22.7761 22.7644 21.90

2.4 39.32 39.2683 39.3288 38.86

3.2 52.55 52.5178 52.5569 52.46

4.0 62.92 62.9096 62.9276 63.05

4.8 71.03 71.0099 71.0331 71.26

5.6 77.36 77.2926 77.3642 77.64

6.4 82.31 82.0853 82.3113 82.58

7.2 86.18 84.8789 86.1775 86.40

8.0 89.20 90.0381 89.1989 89.37

8.8 91.56 91.9454 91.5601 91.68

9.6 93.41 93.6681 93.4054 93.47

r2=1.92265
r3=2.5

l=5.0

R=7

h=0.866

d=6

y y

z zx x

Fig. 2. An elbow pipe and its main dimensions.

Fig. 3. Temperature distributions along the ring (y¼0) of an elbow pipe.
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maintained for t40 like in Fig. 1. All the other faces are thermally

insulated. The thermal diffusive a is 0.125 m2/s. The time-

temperature history is studied at the base of the cube. In our

application, 150 boundary linear triangle elements with 576
nodes are employed. We compare the results with the analytical

solution in Table 2.

In Table 2 we can find that numerical solutions with our

method are accurate. N is the parameter in Laplace inversion

which is the same as in Eq. (48). The number of significant digits

is about equal to 3 when N¼4 and is about equal to 4 when N¼6.

There are four more equations to be solved when N¼6 than N¼4

in LS. Compared with the poor accuracy of early phase in most of

the time domain approach, the results provided by our method is

quite accurate even in early steps.

Example 2. Heat conduction on an elbow pipe

In this example, an elbow pipe with its geometry and dimen-

sions listed in Fig. 2 is considered.

The following analytical field is used:

uðX, tÞ ¼ x4þ12y2þ12zþ12x2tþ12t2þ24t ð52Þ

the thermal diffusivity is a¼1 m2/s. The initial temperature for

this problem is given by:

u0 ¼ x4þ12y2þ12z ð53Þ

The initial temperature distribution is expressed by a polynomial

function, thus the domain integral can be analytically converted to

boundary integrals when M43 as introduced before. In LS, the

Neumann boundary condition is given as follows:

qðX, sÞ ¼ 4x3

s þ
24x
s2 , 24y

s , 12
s

� �
� n
!
ðx, y, zÞ ð54Þ

In this analysis, 332 elements and 1252 nodes are used. N is

equal to 4. Fig. 3 and Fig. 4 show the numerical solutions of

temperature and flux, respectively, which are compared with the

exact solutions. The view points in the domain are distributed

along the circle, whose coordinate y¼0 (have been shown in

Fig. 2) and the radius of which is Section 2.5. The angle between

the neighbor points is 151.

The numerical solutions show that the heat conduction pro-

blem with non-uniform polynomial distributed initial tempera-

ture can be accurately solved by our method.

Example 3. A cube with heat generation

As the last example, we analyze a cube with a heat generation.

The length of the cube is L¼1 m. It is assumed that the thermal

diffusivity a is 1.6�10�5 m2/s. In this analysis, 150 boundary

elements and 576 boundary nodes have been used. The surface



Fig. 4. Flux distributions along the ring (y¼0) of an elbow pipe.

Fig. 5. Temperature distributions in cube (x¼y¼z).

Fig. 6. Temperature variation history on several points in cube M¼3, N¼4.

Fig. 7. Temperature variation history on point (0.5, 0.5, 0.5), M¼1, 2, 3, and N¼4.
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temperature is 0 1C when t¼0. Step heating is assumed. The heat

generation is given by

wðx, y, zÞ ¼w0sin
px

L
sin

py

L
sin

pz

L
ðtZ0Þ ð55Þ

The higher order form of the heat generation in MRM is

wjðx, y, zÞ ¼ ð3p2Þ
j
�wðx, y, zÞ ð56Þ
This is a typical example that the coefficient of the higher order

source term increases. The exact solution for this problem is

uðx, y, zÞ ¼ aw0
kE sin px

L sin py
L sin pz

L 1�expð�EtÞ½ �

E¼ 3ap2

L2

ð57Þ

where w0/E¼1.0�105 K/m2 is assumed. Fig. 5 shows the com-

parison between the numerical solution and exact solution at

t¼0.2, 0.4, 0.6, 0.8 and 1.0 s. 19 points along the diagonal of the

cube are selected as the view points in this example. Fig. 6 shows

the time evolution of the temperature at points x¼y¼z¼0.05, 0.1,

0.2, 0.4 and 0.5. Fig. 7 show the numerical solutions with M¼1,

2 and 3, which are compared with the exact solution.

In this example the problem with arbitrary heat generation is

solved by our method. The temperature along the diagonal of the

cube is shown Fig. 5 and Fig. 6. Fig. 7 show the convergence of

MRM at t¼1000 s. Even if the higher order heat generation

increases nearly 30 times of the coefficient, we only apply three

terms to compute the series in Eq. (37) at t¼1000 s.

4. Conclusion

Three-Dimension transient heat conduction problems with
uniform, non-uniform initial temperature distribution and arbi-
trary heat generation function are solved in the paper using BEM.
Numerical results illustrated the validity and accuracy of the
proposed method.

In our method, with the quickly convergent higher order
fundamental solutions, most of the domain integrals, which
appear in the BIE of transient heat conduction problem, can be
converted to several boundary integrals and non-integral terms.
Furthermore, due to the simple form of the higher order funda-
mental solutions in our method, the implementation of our
method is very simple and no additional matrix is required even
for a large number of orders of the fundamental solutions.

With the help of the Gaver-Wynn-rho formulation, we com-
puted the inverse Laplace transformation accurately and effi-
ciently in our implementation.
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